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The present study is concerned with an analysis of gravitational and acoustic 
waves which are excited by a vibrational source deeply placed in a liquid covered 
by ice. An analysis of the rigidity characteristics of ice modeled by an elastic 
layer or by a Kirchhoff plate is done by factorization of the solution to the 
integral equation equivalent to an initially combined boundary value problem. 
The uncombined boundary condition is used to solve problems for unrestricted ice 
fields in [1-3], whereas combined conditions with vibrational sources positioned 
at the boundary of the medium are used in [4]. 

i. We will consider the excitation of a wave field in a layer of liquid covered by an 
elastic layer, where sources of harmonic vibrations are positioned at the boundary inter- 
face of the media. The source is modeled as a discontinuity in the distributed load and is 
assigned over the range x, y~ ~, z = -C. A layer of ideal, heavy liquid ([x,y[~oo, --H 

z~--C) serves as an absolutely rigid foundation. The field of displacements in the 
elastic layer(Ix, y[~oo, --C~z~O) is described by Lame's equations of motion, and the 
potential of the velocities of the liquid particles satisfies the wave equation. The time 
dependences of the above functions are given by the relation ~(x, y, z, t) =/(~ y, z)e-~t A 
vibrational source is positioned at the boundary interface of the two media, and the 
stresses and the normal velocities are equal outside the region occupied by the source. 
Inside this region (x, y~ ~, z = -C), the normal stresses at the edges are ~l(X,y) = ~*(x, y, 
--C @ 0), ~U(x, y) = ~*(x, y, - -C - -  0), a n d ,  t h e r e f o r e ,  Ao(x, y) = oI(x, y) --  ~ZI(x, y) B e c a u s e  o f  

t h e  r a d i a t i o n  c o n d i t i o n s  o f  t h e  wave ,  t h e  f o r m u l a t i o n  o f  t h e  p r o b l e m  does  n o t  a p p l y  a t  
infinity. 

One can use integral transformations to reduce the boundary value problem to the solu- 
tion of an integral equation in terms of the unknown change in the velocities of the dis- 
placements hV~(x, y) = V*(x, y, -C + 0) - V*(x, y, - C - 0) at the edges of the vibrational 
source 

; J" AV~ (~, I1) k (X --  ~ Y --  ~]) d~d~l = / (x$ y), x, y ~ ~,  
0. 

] (x, y) = o (x~, y) '+ ; .! A(~ (~, ~l) m (x - -  ~, y - -  ~1) d$dq., 

k ( t , s ) = ~ . f  .( K(u)e-~(at+~)dad~3, 
Fl P2 

m(t,~) = 7-~- . . ,  
Pt ]72 

( 1 . 1 )  

Using dimensionless functions and variables, Eq.(l.l) has the form 

K(u)  - i[myo sh ( '%(h.-  c)) -- • ch(%(h -- c))]Ao(u)/A(u), 

M(u) :=- IraTe sh (%(h --  c)) - - •  ell (?o(h c))lA~(u)/A(u),: 

ao  (,~) = 4 l ( v '  + via,:.,u ) sh (5,,c) sh (5,~c) - -  27~5,,_,u~-? ~ (oh (,hc) ch  (V~c) - -  1)] ,  
A 1 (u) = • [y%h (?..,c) ch (71c) --u~y1y2sh (y~c) ch (7~c)1~ 

(1 .2)  
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A(u) = A,(u)[mTo sh (%(h - -  c)) - -  • ch (?o(h - -  c))l 

- -  ho(u)po% sh  (?o(h - -  c)) ,  

u S = (~2 _~ ~)R2,. P0 = Pl/P'~, m = R g / b ~ ,  

= AT, ,  = 

h = H/R,  c = C/R, x = z /R ,  y ~ y/R, 

?~ =u ~ - e ~  2, i = 0 ~ 1 , 2 ,  • 

e~ = b2/a 2, e[ = (1 - - 2 v ) / 2  (1 - -  ~), e~ = t ,  %,2 = u '  - -  x ' /2 .  

Here Pz ,P2  are the densities of the elastic medium and the liquid; b, a are the velocity 
of the transverse waves in the elastic layer and the velocity of sound in the liquid; C, H 
are the thicknesses of the elastic and the liquid media; g is the acceleration due to 
gravity; ~ = 2~f is the frequency of the vibrations from the source; e is Poisson's coeffi- 
cient for an elastic medium; and R is the characteristic dimension of the vibrational 
source (for a circular source, it is the radius). Selection of the profiles F I and F 2 (F I 
is located above F 2) which coincide with the real axis and the real negative poles K(u) and 
M(u) from above and the real positive poles from below is considered in [5]. 

One can conclude from an analysis of the dispersion relations (1.2) that the functions 
K(u) and M(u) have equal poles (there is a finite number of real poles). At infinity 
K(u) ,'~ O(lu[=*), u--+ _____oo . 

2. If the vibrational source has the form of a circle with an axially distributed load, 
then (i.i) transforms into 

] 

.[ K (u) Jo (ur) udu -~ AVz (p) J0:(up) pdp = / (r), 0 <~ r < t,: ( 2 . 1 )  
F 0 

1 

] (r)=o (r) + [M (u) Jo (ur) udu [Ao (p) Jo.(UP) pdp, r = Y x' + y' i> 0 

(J0(x) is a Bessel function). The contour F coincides with the semiaxis at almost all points 
[0, ~), which is the right half of profile F I. 

An analysis of the properties of the functions K(u) and M(u) allows one to apply the 
technique of left-side regularization to solve Eq. (2.1) [6]. The function K(u) can be 
approximated by a similar function K*(u) with the following left-side factorization 

K*(u) = K+(u)K_(u),~ ( 2 . 2 )  

w h e r e  K+(u )  and  K _ ( u )  a r e  r e g u l a r  f u n c t i o n s  i n  t h e  u p p e r  and  l o w e r  h a l f - p l a n e s ,  r e s p e c t i v e l y .  

One c a n  u s e  t h e  r e s u l t s  o f  [6]  t o  f i n d  t h e  c o n t i n u a t i o n  o f  t h e  r i g h t - h a n d  s i d e  o f  t h e  
i n t e g r a l  e q u a t i o n  ( 2 . 1 ) ,  t h e  f u n c t i o n  f ( r )  ( r  > 1 ) ,  i n  t h e  f o r m  

4 ~ H(, ~) (ur) Y+ (u) dug r > i, ( 2 . 3 )  
] (r) = -- 2 K+ (u) Hr ) (u--------~, 

F 0 

Where H(0a)(x) is a Hankel function, and contour F 0 (from -~ to 4"~176 represents contour F over 
the entire real axis and is symmetric relative to the origin. The function Y+(u) is regular 
in the upper half-plane and satisfies the following integral equation 

Y +  (or) -]- ~ K+ (u) (u --  a) t 2 u 2 '~t  K~ (u) (u--a) udu. ( 2 . 4  ) 
1 F22 ' 

Here, a lies above contour F11 (from -~ to 4-oo), which is, in turn, situated above F22 (from 
-~ to +~); contours F~l and Fz2 are obtained by deforming F 0 at the pole of regularity for 
the function in the integral; F(u) is the Fourier transformation of f(r)(r ! i) on the right- 
hand side of Eq. (2.1); 
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.q (~,) Hi~) (o ] 
o ( t , u )  ~ - z . u l f o ~ ) ( u ) J o ( u )  u so(,,) t ~ j  + t + u. 

Omitting the integration contours rzl and F22 in the lower half-planes and intersecting 
a finite number of poles K+(~) and zeros K-$(~), the solution of (2.4) reduces to the solu- 
tion of a system of linear algebraic equations in terms of the values of Y+(~) at the poles 
K+(~) which are intersected by contour F22. Hence, we can use the estimation in [5] to 
neglect the integrals in terms of the deformed contours. One can show that (2.4) is nearly 
the Fredholm equation and that it reduces to an integral with a completely continuous 
integral operator. Hence, the obtained linear algebraic system can be effectively solved 
by numerical methods (in particular, Gauss' method). 

A similar deformation of contour r 0 in the lower half-plane can be used to expand the 
right-hand side of Eq. (2.1) - function f(r) (r > i) - into a series of the same values of 
Y+(~) at the poles K+(~) determined from the above algebraic system. Taking into account 
the right-hand side of Eq. (2.1) - function f(r) (r > i) - one can obtain the unknown 
change in the velocity of the edges of the vibrational source through a dual transformation 
of the integral operator from (2.1). 

3. We will assume that 5o(p) ~ 0, which corresponds to the case when forces that are 
equal in quantity and opposite in direction are applied to the upper and lower boundaries of 
the vibrational source. In this case 

](r) -~  a(r),  r < t .  (3.1) 
Then, the extension of the right-hand side - function f(r) (r > i) - is the stress o(r) at 
the boundary interface of the medium outside of the region occupied by the vibrational 
source. 

A computer was used to determine the real singularities of the function K(u), and the 
following approximation function was obtained 

K (u) .~ K* (~) - -  V T U ~ .  ~=~ 

where among $i, ni there exist all real zeros $.(j = i, 2, ..., N z) and poles nj(j = i, 2, 
�9 .., N 2) of the function K(u)~ while N z < N, N23< N. One obtains the required decrease at 
infinity by introducing /u 2 + B 2 into (3.2). The value of B is elected from the condition 
of the best approximation and from the condition of the infinitesimal character of the 
integrals in terms of the deformed contours (when (2.4) is reduced to an algebraic system). 
For our purposes, the optimal value is B = i0. An analysis of o(r) when r + 1 allows one 
to conclude that the stress on the contour of the vibrational source (z = -c, r + 1 + 0) 
changes in a finite manner (o(l + 0) - o(l - 0) = const). 

We analyzed acoustic loads o(r) (r > I) along the line of the boundary interface be- 
tween the two media outside the region occupied by the vibrational source. In Fig. i, one 
can see the dimensionless amplitude of the complex quantity o(r) as a function of the dis- 
tance r from the center of vibrational source at r = i, and the curves 1-6 correspond to 
K 2 = i, 2, ..., 6. Figure 1 also reflects the amplitude-frequency dependence of o. For 
r = i.i it is evident that the absolute value of o(r) has a maximum when <2 = 1 and a minimum 
when K 3 = 3. The values ~](r)~ o(r) = I (r~i),h = 5~c = 0,1, 90 = 1,1, so = 0.66,and v=0.3 were 
used for making calculations. 

4. In contrast to the previous problem which concerned an analysis of acoustic charac- 
teristics, we will now consider a similar problem where an ice field modeled by Kirchhoff's 
plate covers a layer of heavy, ideal liquid. This model, which only takes into account 
warping vibrations of the ice, well describes the process of excitation and propagation of 
surface gravitational waves [i]. 

Integral transformations can be used to reduce the problem to an equation equivalent to 
(i.I), where 
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K(u)  = ipoD(u  4 - -  k'~)[m?o sh  (?o(h - -  c)) 

__ ~2 ch ('~o(h -- c))]/A(u), 

M ( u )  = [m?o sh (?o(h - -  c)) - -  • ch (?o(h - -  c ) ) ] /A(u ) ,  

A(u)  = [ D ( u '  - -  ~,~) -~- m]?o  sh (l'o(h - -  e)) - - •  ch (%(h - -  c)), 

D = poc3/6(t - -  v ) ,  ~2 ____ 6(1 - -  v)R~oo2/c2b 2, 

(4.1) 

and K(u) ~ 0(I) when u + +~. 
w 

Similarly, in the previous solution of Eq. (i.i) [or after the transformation of (2.1) 
with the right-hand side of (3.1)], which was regularized by left-side factorization, the 
Fourier transformation can be used on the right-hand side, whose values in the range r > 1 
are given by Eq. (2.3). 

Numerical analysis was done of the solution for a heavy, incompressible liquid. The 
absolute values of the normal stresses at the boundary interface outside the region occupied 
by the vibrational source are given in Fig. 2, where the dashed line indicates the hehav%or 
of the shear forces due to the excitable gravitational mode when the ice is modeled as a thin 
plate, and the solid line shows the amplitude of the acoustic pressure on the ice (modeled by 
an elastic layer) as function of the radial coordinate r. Figure 2 can be used to estimate 
the contribution which the different components of the total normal pressure make to the 
dynamic action on the ice. Calculations were done for the dimensionless parameters indicated 
above and for <2 = 0.i. 
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